Equational Binary Decision Diagrams

Jan Friso Groote!? and Jaco van de Pol!

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Email: JanFriso.Groote@cwi.nl, Jaco.van.de.Pol@cwi.nl
2 Department of Computing Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. We allow equations in binary decision diagrams (BDD). The
resulting objects are called EQ-BDDs. A straightforward notion of re-
duced ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that
each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-
OBDDs satisfiability and tautology checking can be done in constant
time.

Several procedures to eliminate equality from BDDs have been reported
in the literature. Typical for our approach is that we keep equalities, and
as a consequence do not employ the finite domain property. Furthermore,
our setting does not strictly require Ackermann’s elimination of function
symbols. This makes our setting much more amenable to combinations
with other techniques in the realm of automatic theorem proving, such
as term rewriting.

We introduce an algorithm, which for any propositional formula with
equations finds an EQ-OBDD that is equivalent to it. The algorithm
has been implemented, and applied to benchmarks known from litera-
ture. The performance of a prototype implementation is comparable to
existing proposals.

1 Introduction

Binary decision diagrams (BDDs) [5,6,12] are widely used for checking satisfia-
bility and tautology of boolean formulae. Applications include hardware verifi-
cation and symbolic model checking. Every formula of propositional logic can be
efficiently represented as a BDD. BDDs can be reduced and ordered, which in
the worst case requires exponential time, but for many interesting applications
it can be done in polynomial time. The reduced and ordered BDD (OBDD)
is a unique representation for boolean formulae, so satisfiability, tautology and
equivalence on OBDDs can be checked in constant time.

Much current research is done on extending the BDD techniques to formulae
outside propositional logic. In principle, the boolean variables can be general-
ized to arbitrary relations. The goal now is to check satisfiability or validity of
quantifier free formulae in a certain theory. The main example is the logic of
equality and uninterpreted function symbols (EUF) [10,7,16]. Another example
is the logic of difference constraints on integers or reals [13].

162

EUF formulae have been successfully applied to the verification of pipelined
microprocessors [8,7] and of compiler optimizations [16]. In these applications,
functions can be viewed as black boxes that are connected in different ways.
Hence the concrete functions can be abstracted from, by replacing them by
uninterpreted function symbols (i.e., universally quantified function variables).
It is clear that if the abstracted formula is valid, then the original formula is.
However, the converse is not true, e.g. * +y = y + z is valid, but its abstract
version F(z,y) = F(y,z) is not.

Two methods for solving EUF formulae exist. The first method is based on
two observations by Ackermann [1]. First, the function variables can be elim-
inated, essentially by replacing any two subterms of the form F(z) and F(y)
by new variables f; and fs, and adding functionality constraints of the form
z =y — f1 = fo. The second observation is the finite domain property, which
states that the resulting formula is satisfiable if, and only if, it is satisfiable over
a finite domain. Given an upper bound n on this domain, each domain variable
can be encoded as a vector of [log(n)] bits. In this way the original problem is
reduced to propositional logic, and can be solved using existing BDD techniques.

The second method extends the BDD data structure, by allowing equations
in the nodes of a BDD, instead of boolean variables only. By viewing all atoms as
distinct variables, the BDD algorithms can still be used to construct a reduced
ordered BDD. Contrary to the propositional case, a path in these OBDDs can
be inconsistent, for instance because it violates transitivity constraints. As a
consequence, all paths of the resulting OBDD have to be checked in order to
conclude satisfiability.

Ultimately, we are interested in the symbolic verification of distributed sys-
tems, using high-level descriptions. This involves reasoning about data types
(specified algebraically) and control (described by boolean conditions on data).
Properties of the system are described using large boolean expressions. We want
to use BDD-techniques in order to prove, or at least simplify, boolean expressions
containing arbitrary relation and function symbols. In this setting, abstraction
doesn’t work, as it doesn’t preserve logical equivalence. Without abstraction,
Ackermann’s function elimination cannot be applied, and the finite domain prop-
erty doesn’t hold.

We therefore turn to the second method, allowing equations in the BDD
nodes. We will give a new definition of “ordered”, such that in ordered BDDs all
paths will be consistent. The advantage is that on ordered BDDs with equations,
the satisfiability check can be done in constant time. The contribution of this
paper is an intermediate step towards the situation where arbitrary relations
and function symbols in BDDs are allowed. We restrict to the case of equations,
without function symbols.

Technical Contribution. In Section 2 we introduce EQ-BDDs, which are BDDs
whose internal nodes may contain equations between variables. We extend the
notion of orderedness so that it covers the equality laws for reflexivity, symmetry,
transitivity and substitution. The main idea is that in a (reduced) ordered EQ-

163

BDD (EQ-OBDD) of the form ITE(z = y, P,Q), y may not occur in P; this can
be achieved by substituting occurrences of y by z. By means of term rewriting
techniques, we show that every EQ-BDD is equivalent to an EQ-OBDD.

Contrary to OBDDs, EQ-OBDDs are not unique, in the sense that different
EQ-OBDDs may still be logically equivalent, so equivalence checking on EQ-
OBDDs cannot be done in constant time. However, we show that in an EQ-
OBDD, each path from the root to a leaf is consistent. As a corollary, 0 is the
only contradictory EQ-OBDD, and 1 is the only tautological one. Every other
EQ-OBDD is satisfiable. So satisfiability and tautology checking on EQ-OBDDs
can still be done in constant time.

We present an algorithm for converting propositional formulae with equality
into an EQ-OBDD in Section 3. Usually a bottom-up algorithm is used, based
on Bryant’s APPLY algorithm [5], which implements the logical connectives on
OBDDs in polynomial time. In the presence of equalities, APPLY would involve
new substitutions, which possibly cause a reordering of the subformulae.

Instead, we use a generalization of the top-down method (cf. [12]). The inef-
ficiency usually attributed to this top-down approach is avoided by using mem-
oization techniques and maximal sharing. We have made a prototype implemen-
tation in C, which uses the ATerm library [4] to manipulate terms in maximally
shared representation. We applied this implementation on the benchmarks used
in [16,19]. It appears that our ideas yield a feasible procedure, and that the
performance is comparable to the approach in [16].

In EQ-BDDs, interpreted function symbols can be incorporated straightfor-
wardly. A complete term rewrite system for the algebraic data part can be used
to reduce the nodes. This always leads to equivalent formulae, but completeness
of the method is lost. In future work we plan to investigate under which circum-
stances completeness can be regained. The fact that equality is incorporated
directly, instead of encoded, can give BDD-techniques a much more prominent
place in interactive theorem provers like PVS [15]. The fact that the performance
of our prototype implementation is comparable with existing proposals indicates
that extendibility does not necessarily come with a loss in efficiency.

Related work. After Ackermann [1] proved decidability of quantifier free logic
with equality, Shostak [18] and Nelson and Oppen [14] provided practical algo-
rithms for the validity check, based on the congruence closure. Those authors
used a transformation to disjunctive normal forms. In [8] this transformation
is avoided, by dealing more efficiently with boolean combinations; in particular
they incorporate case splitting as in the Davis-Putnam procedure. We next con-
sider papers based on BDDs, that either use the aforementioned method based
on the finite domain property, or allow arbitrary atoms in the BDD nodes.
Two recent papers [7,16] refine the method based on finite domains. The
main contribution of Bryant et al. [7] is to distinguish between function symbols
that occur in positive equations only (p-symbols) and other function symbols (g-
symbols). This allows to restrict attention to maximally diverse interpretations,
in which p-symbols can be interpreted by a fixed value. Also Ackermann’s func-
tion elimination is improved. Pnueli et al. [16] provide heuristics to obtain lower

164

estimates for the domains. These estimates are also obtained by distinguishing
between positive and negative occurrences of equations. Both methods rely on
the finite domain property, whereas our solution avoids this.

The other method is closer to our approach. Goel et al. [10] avoid bit vectors
for finite domains, by introducing boolean variables e;;, representing the equation
z; = z;. So their method doesn’t rely on the finite model property. Similarly,
Mpgller et al. [13] allow difference constraints of the form z — y < ¢ in the BDD
nodes, with ¢ an integer or real constant. In case the underlying domain consists
of integers or reals, z = y can be encoded as r —y < 0Ay — z <0, leading to
two different nodes. For other underlying domains, such as natural numbers or
lists, this encoding is not possible, where our approach works for equality in any
domain.

Both [10] and [13] first reduce a formula to OBDD, viewing all boolean terms
as different variables. Although the nodes on a path are all different after this
operation, a path can still be inconsistent, for instance by violating transitivity.
Parts of the OBDD are inaccessible, so in general the OBDD is too large. The
OBDD can be further reduced in order to check satisfiability (this is called path-
reduced in [13]), but this involves the inspection of all paths, of which there can
be exponentially many. Indeed, in [10] it is proved that deciding whether an
OBDD with e;;-variables has a satisfaction that complies with transitivity is
NP-complete. In our case, the paths in the resulting EQ-OBDD are consistent
and the test for satisflability on EQ-OBDDs requires constant time only.

Another approach, mentioned in the full version of [7], considers the addition
of transitivity constraints to a formula. Adding all of them usually leads to
a blow-up of the BDD. A heuristics is presented to prune the set of needed
transitivity constraints. In our approach transitivity constraints are generated
on the fly when needed, by performing proper substitutions.

In the implementation, the fundamental data structure is a maximally shared
term, partly consisting of boolean connectives, and partly of BDD-nodes. This
resembles the Binary Expression Diagrams (BEDs) of [2], for the pure boolean
case. We have not thoroughly studied the relationship between our top-down
algorithm and their up-one. In [17] it is indicated how such a comparison could be
made in principle, by using term rewriting theory on strategies. Also a thorough
comparison with the algorithm in [8] would be interesting.

2 EQ-BDDs

We now define a syntax for formulae. First assume disjoint sets P and V. Mem-
bers of P are called proposition (boolean) variables (typically p, ¢, ...) and V
contains domain variables (typically z, y, z, -..).

Definition 1. Formulae are expressions satisfying the following syntax:

$ u= 0|1|P|V=V]|-8|dAd|ITES,S, &)

165

We use z # y as an abbreviation of ~(z = y). In order to avoid confusion, we
write = for syntactic equality, so £ = y means that z and y are the same variable.

An interpretation consists of a non-empty domain D and interpretation
functions I : V=D and J : P—{0,1}. Then the semantics of &, denoted by
@] € {0,1}, can be defined straightforwardly. In particular, ITE(z, y,2){ = y{
if zJ = 1, otherwise it equals z;. Equality is interpreted as the identity relation
by defining (z = y){ as 1 if I(z) = I(y), O otherwise. Now D, I, J forms a
model for ¢ iff #/ = 1. & is satisfiable iff it has a model and it is tautological
(or: universally valid) iff all interpretations are models. & and ¥ are logically
equivalent iff they have the same models. A theory is a set of formulae. Given
a theory S, we write S F & iff all models for S are models of $. We rely on
the following lemma, which is a theorem of Shostak [18], specialized to the case
without function symbols.

Lemma 2. Let S be a set of equalities and T a set of inequalities. Then SUT
is satisfiable if and only if for all zx #y € T, x = y is not in the reflexive,
symmetric and transitive closure of S.

We now turn to the study of EQ-BDDs, which can be seen as a subset of for-
mulae, and consider arbitrary formulae in Section 3. A binary decision diagram
(BDD [6,12]) is a DAG, whose internal nodes contain guards, and whose leaves
are labeled 0 (low, false) or 1 (high, true). Each node contains two distinguished
outgoing edges, called low and high. In ordinary BDDs, the guards solely con-
sist of proposition variables. The only difference between ordinary BDDs and
EQ-BDDs is that in the latter, a guard can also consist of equations between
domain variables. EQ-BDDs can be depicted as follows (the low/false edges are
dashed):

1 0

We reason mainly about EQ-BDDs as a restricted subset of formulae, al-
though in implementations we always treat these formulae as maximally shared
DAGs. There are constants to represent the nodes 0 or 1. Furthermore, we use
the if-then-else function ITE(g,t1,t2) where g is a guard, or label of a node in
the BDD, t; is the high node and t; is the low node. Guards can be proposi-
tion variables in P, or equations of the form z = y where z and y are domain
variables (V).

Definition 3. We define the set G of guards and B of EQ-BDDs,

G:=P | V=V
B:=0 | 1 | ITE(G,B,B)

166

The EQ-BDD depicted above can be written as: ITE(z = y,1,ITE(y = 2,1,0)).

In order to compute whether an EQ-BDD is tautological or satisfiable, it will
first be ordered. In an ordered EQ-BDD, the guards on a path may only appear
in a fixed order. To this end, we impose a total order on PUV (e.g. > p >
y > z > q). This order is extended lexicographically to guards as follows:

Definition 4 (Order on guards).

D >~ q as given above
(z=9y)>pif, and only if, x> p
p-(z=y)tf, and only if, p> =z
(z =y) = (v =) if, and only if, either x > u, orz = u and y > v.

Given this order, we can now define what we mean by an ordered EQ-BDD. We
use some elementary terminology from term rewrite systems (TRSs), which can
for instance be found in [11,3]. In particular, a normal form is a term to which
no rule can be applied. A system is terminating if no infinite rewrite sequence
exists.

Definition 5. An EQ-BDD is ordered if, and only if, it is a normal form
w.r.t. the following term rewrite system, called ORDER. An EQ-OBDD is an
ordered EQ-BDD.:

. ITE(G,T,T) —» T.

. ITE(G,ITE(G, T, Tz),Ts) 4 ITE(G,Tl,Tg).

. ITE(G,T1,ITE(G, T3, Ts)) = ITE(G, T}, Ts).

ITE(G,,ITE(G,, T1,T2), T3) = ITE(G2, ITE(G1, T1,T3), ITE(G1, T2, T3)),
provided G1 >~ Gs.

ITE(G:, Ty, ITE(G,, T2, T3)) = ITE(G,, ITE(G), T3, 1), ITE(G,, T1, T3)),
provided G, = Ga

6. ITE(:C = $,T1,T2) - T;.

7. ITE(y = 2,11, T3) = ITE(z = y,T1,T»), provided z < y

8. ITE(z = y,T1[y], T2) = ITE(z =y, T1[2],T2), if <y and y occurs in Ty.

#:-’\CQ(QN

o

Rules 6-8 capture the properties of equality, viz. reflexivity, symmetry, and sub-
stitutivity. From these rules, transitivity can be derived, as we demonstrate in
Figure 1 (we assume z < y < z). Note that in rule 8 all instances of y in Ty are
replaced by z. From a term rewriting perspective this is non-standard, because
it is a non-local rule.

In a normal form no rewrite rules are applicable. Hence it is easy to see that
in an ordered EQ-BDD, the guards along a path occur in strictly increasing
order (otherwise rule 2/3/4/5 would be applicable) and in all guards of the form
z =y, it must be the case that z < y (otherwise rule 6/7 would be applicable).
Note that the transformations indicated by the rules are sound, in the sense that
they yield logically equivalent EQ-BDDs.

We prove that each EQ-BDD is equivalent to an EQ-OBDD, by showing that
the TRS ORDER always terminates. The termination proof uses the powerful
recursive path ordering (RPO) [9]. For RPO comparisons, we view ITE(g, t1, t2)

167

y=z) \ =z r=2
. \

1
=y, —-8—-)— T= —2—>- T=y — @ -—-1—-)- 1
\ \ \ T
K \ \ h
| 1

Fig. 1. Derivation of transitivity of equality in EQ-BDDs

as g(t1,t2). RPO needs an ordering on the function symbols. For this we just use
the total order on guards of Definition 4, extended with 1,0 < g for all guards.
In this case, RPO specializes to the following relation:

Definition 6. s = f(s1,52) »mpo t iff t =0 ort =1, ort = g(t1,t2) and one
of the following holds:

- (I) S1 Z'_rpo t, or sz trpo t;
— (II) f > g and s >rpo t1 and s >rpo t2;
— (II) f = g and either 81 >rpo t1 and so > rpo ta, OT S3 >rpo t2 and 81 Zrpo t1.

Here © >;po ¥ means: & >0 y or £ = y. Usually in clause (III) the multiset or
lexicographic extension is used, but this is not needed for our purposes. From
the literature, it is well known that >, is an order (in particular the relation
is transitive), which is well-founded (because > on guards is) and monotone, so
it is useful in proving termination.

Lemma 7. The rewrite system ORDER is terminating.

Proof. 1t is straightforward to show that rule 1-8 are contained in >.p, (for rule
8 monotonicity of >, is used). From this termination follows. u}

Theorem 8. Every EQ-BDD is equivalent to some EQ-OBDD.

Traditional OBDDs are unique representations of boolean functions, which
makes them useful for checking equivalence between formulae. For EQ-OBDDs,
however, this uniqueness property fails, as the following example shows.

Ezample 9. Let © < y < z. Consider the EQ-BDDs ITE(zx = y,1,ITE(y =
z,0,1)) and ITE(z = 2,1,ITE(y = 2,0,1)). These represent the predicates
y=z—z=yand y =2 - = = z, which are logically equivalent. Both are
ordered, because no rewrite rule is applicable. But they are not identical. 0

168

Although EQ-OBDDs do not have the uniqueness property, satisfiability or
tautology checking can still be done in constant time. The rest of this section is
devoted to the proof of this statement.

Definition 10. Paths are sequences of 0’s and 1’s. We let letters a, 8 and vy
range over paths, and write € for the empty sequence, a.f for the concatenation,
and o T B if a is a prefiz of B. With seq(T) we denote the sequences that
correspond to a path in EQ-BDD T. For a path a € seq(T) we write T'|, for the
guard at the end of path «, inductively defined by:

- ITE(G,T,U)|. = G.
— ITE(G,T,U)|1.o = T|a (the high branch).
- ITE(G,T,U)|o.c =Ul|q (the low branch).

We also define the theory up to the node corresponding to path a € seq(T),
notation Th(T,c), inductively on an EQ-BDD T':

~ Th(T,e) = 0.
~ TR(T,a.1) = Th(T,a) U{T|s}.
— Th(T,0.0) = Th(T,e) U{=T)a}-

Finally, o € seq(T) is called consistent iff Th(T,) is satisfiable.

Ezample 11. Let T = ITE(z = y,1,ITE(y = 2,ITE(z = 2,1,0),1)). Then the
guard at path 0.1 is: T)o.; = z = z. The theory at that point is: Th(7,0.1) =
{z # y,y = z} which is satisfiable, so 0.1 is consistent. O

The analysis of EQ-OBDDs depends on the following rather syntactic lemma.
The first states that in EQ-OBDDs y does not occur below the high branch of
T = y; the second states that y does not occur positively above z = y.

Lemma 12. Let T be an EQ-OBDD, and a, B € seq(T") be consistent paths.

LITo=z=yandalC B thenT|gZz=yandT|gZy = 2.
2. IfTlao=rz=yandBlCo, thenTgEz=y andT|g £y = z.
8. If Th(T,a) Ex =z and z < 2, then for somey, y =z € Th(T,a).

Proof. (1) If T'| contains y, rewrite step 8 would be applicable, which contradicts
orderedness.

(2) If T|p = z = y rewrite step (8) is applicable, contradicting orderedness.
Assume T|3 = y = 2. Note that < y, as z = y appears in the EQ-OBDD,
so £ = y < y = z. Hence, on the path between the nodes labeled with y = =z
and z = y, at least one of the steps (4,5) would be applicable. This contradicts
orderedness of T'.

(3) Let Th(T,a) F z = z. Note that Th(T,) is satisfiable, but Th(T,a) U
{z # 2} is not. Hence by two applications of Lemma 2, z = z is in the reflexive,
symmetric, transitive closure of the positive equations in Th(T,). Le. there
exist n and z; (0 < i < n), such that 2o =z, z, = z and for all ¢ (0 <7 < n),
z; = zi41 € Th(T, @) or z;41 = z; € Th(T,a). Because z < z, we have n > 1.

169

Consider the last equation in this sequence, which is either z,—1 = z € Th(T,),
in which case we are done, oritis z = z,,—; € Th(T, a). In this case, z,_; doesn’t
occur in any other equation (it cannot occur positively above z = z,_; in T by
(2), nor can it occur below it by (1)). Hence n = 1 and z = z € Th(T,a). This
contradicts orderedness of T', because = < z. O

We can now prove that each guard in an EQ-OBDD is logically independent
from those occurring above it.

Lemma 13. Let T be an EQ-OBDD and let o € seq(T) be consistent. Then

1. Th(T,a) £ T|o and
2. Th(T,) FT|a-

Proof. If T|o = p (p € P), then by orderedness, p does not occur in Th(T,),
so the lemma follows (this is similar to the traditional BDD-case). Now let
T|o =x = 2. Hence, z < z.

(1) Assume Th(T,a) F z = 2. By Lemma 12.3, for some y, y = z € Th(T,).
Then rewrite step 8 is applicable, which contradicts orderedness.

(2) Assume Th(T,a) E = # z. Using Lemma 2 it can be proved that for
some y and v, Th(T,a) F {z = y,v = z} and either y # v € Th(T,a) or
v #y € Th(T,). By Lemma 12.2, no positive equations containing z occur in
Th(T,c), so z = v. Now if z #y € Th(T,a), z = y occurs above z = z in the
ordered EQ-BDD T, so z < z, contradicting z < z. Hence, y # z € Th(T,a).
Note that as T is ordered and y = z occurs above z = 2, ¥y < z. Now by
Lemma 12.3, for some w, w = z € Th(T, «). But then rewrite step 8 would be
applicable, which contradicts orderedness. 0

Theorem 14. Satisfiability and tautology on EQ-OBDDs can be checked in con-
stant time.

Proof. Using Lemma 13 it can be proved that each path to a leaf in an EQ-
OBDD is consistent, so all leaves are reachable by some interpretation. Hence
if the EQ-OBDD is a tautology, all leaves must be syntactically equal to 1, and
by rule (1) of ORDER, the EQ-OBDD must be the node 1. In a similar way, the
only contradictory EQ-OBDD is 0. Hence an EQ-OBDD is satisfiable if, and
only if, it is syntactically different from 0. 0

3 Algorithm for Checking Tautology and Satisfiability

‘We are now interested in constructing EQ-BDDs out of formulae. In traditional
BDDs, a formula is transformed into an OBDD in a bottom-up fashion. Given
two ordered BDDs, the logical operations (conjunction, disjunction, etc.) can be
performed in polynomial time by Bryant’s APPLY algorithm. If two EQ-OBDDs
are combined in this way, new substitutions must be done in both of them, which
destroy the ordering. We can of course re-order them by using the rewrite system
ORDER, but the advantage of having a polynomial APPLY has been lost.

170

As an alternative, we use a top-down approach, which in the context of
OBDD:s has for instance been described in [12]. This approach is based on the
Shannon expansion. For propositional logic, this reads: & <= ITE(p, |, 4511,,),
where in @|, all occurrences of p are replaced by 1, and in &|-p by O. Tak%ng
for p the smallest propositional variable in the ordering, this Shannon expansion
can be used to create a root node for p, and recursively continuing with two
subformulae that do not contain p. The number of variables in the formula
decreases. So, this process terminates. Because at each step the smallest variable
is taken, the resulting BDD is ordered.

When p is an equation, say z = y, the Shannon expansion still holds. In the
formula &|,-,, we assume that z = y, so we are allowed to substitute y for z.
This leads to the following variant of the Shannon expansion:

® & ITE(z = y,P[z :=y], B[(z = y) := 0])

This is recursively applied, with £ = y the smallest equation in &, oriented in
such a way that z < y in the variable order. Due to the substitutions it is not
guaranteed that the resulting EQ-BDD is ordered. However, we will show that
repeatedly applying the Shannon expansion does lead to an EQ-OBDD.

3.1 A Topdown Algorithm

We now describe the algorithm precisely. We introduce a term rewrite system
SIMPLIFY, which removes superfluous occurrences of 0 and 1 and orients all
guards. It is clearly terminating and confluent.

Definition 15. The TRS SIMPLIFY consists of the following rules:

OAT =0 -1 =0

TA0-0 -0 -1 r=2z—1

IANT T ITEQ,T,U)—>T y=z—=z=y ifr<y
TA1-=T ITE(0,T,U) - U

We write ®| for the normal form of ¢ obtained by this rewrite system. & is called
simplified, if ® = .

Note that every closed formula rewrites to 0 or 1. Furthermore, on EQ-BDDs
only the last four rules are applicable. Finally, note that ordered EQ-BDDs are
simplified. We introduce an auxiliary operation ®|,, where @ is a formula and s
a guard or the negation of a guard. We assume that & is simplified.

Definition 16. We define &|;, where s is p, P, T =y orx #y as follows:
If s = p, then $|, consists of replacing all occurrences of p by 1; in S|, all
occurrences of p are replaced by 0. In case s = z =y, we obtain s by replacing
all occurrences of y by z, and &|, by replacing = =y by 0 everywhere.

Ezample 17. Let $ = s =z2Ay=zand g = r = 2z and assume z <y <z
Then @), =z =zAy ==z and Pl-g = 0Ny = 2. After simplification, we get:
?|,l =z =y and &|-,) = 0. u]

171

We are now ready to define the basic top-down transformation algorithm:

Definition 18. Assume that @ be a simplified formula. We define the algorithm
TOPDOWN on input @ as follows:

— TopDOWN(1) =1

— TopPDOWN(0) =0

— Otherwise, let g be the smallest guard occurring in ®. Then

ToppOWN(®) = ITE(g, TOPDOWN(S|,)), TOPDOWN(P|-g1))

where
T ifT=U
ITE(g,T,U) otherwise.

Note that a closed formula simplifies to 1 or 0, so in the other case it must contain
a guard. Note that due to substitutions, new equalities can be introduced on the
fly. We now prove termination and soundness of the algorithm T'opPpDOWN. With
#(®) we denote the number of guard occurrences in the completely unfolded
tree of . Note that none of the rules from SIMPLIFY increases the number of
guards, so we have the following:

Lemma 19. For any formula &, we have #($) > #(P}).

TTE(g,T,U)E{

Lemma 20. Let & be a simplified formula, and let g be a simplified guard.

(1) #(®) > #(%ly) (3) if g occurs in &, then #(9) > #(2y)

@) #(8) > #(8o) (4) if g occurs in B, then () > #(3|)
Proof. Simultaneous formula induction on €. This boils down to checking that
in Definition 16, each guard is replaced by at most one other guard. O

Theorem 21. The algorithm TOPDOWN(®) always terminates.
Proof. With each recursive call, #(&) strictly decreases. 0
Theorem 22 (soundness). For any formula &, we have: & <= TOPDOWN(P)

Proof. Induction over the number of calls to TOPDOWN. The induction step uses
that & <= 9| and g = (& <= $|,) and similar for —g. o

3.2 Iteration of TOPDOWN

Unfortunately, it is not the case that ToPDOWN(®P) is always ordered, as the
following example shows.

Ezample 25. Assume z < y < 2. Then TOPDOWN(z Ay A (z =2zAy =2)) =
ITE(z = y,0,ITE(z = z,ITE(z = y,1,0),0)). See Figure 2, where the formulae
in square brackets denote the arguments to TOPDOWN, and the dashed nodes
occur in the call graph, but are suppressed in the resulting EQ-BDD. In the low
branch, z = y is replaced by 0, but due to substitutions in the recursive call,
new occurrences of z = y are generated. Note that this is dangerous, as after one
application of TOPDOWN it still contains unsatisfiable paths, which erroneously
could lead one to believe that the EQ-BDD represents a satisfiable formula. O

172

[z#yn(@=z2ny=2)]

le=sAy=2]

z=y) | 0

Fig. 2. Two call-graphs to TOPDOWN.

Note that in the previous example, an EQ-OBDD is found by another appli-
cation of ToPDOWN. We propose to apply TOPDOWN repeatedly to a formula
&, until a fixed point is reached. In the benchmarks presented in Section 3.3
at most two iterations of TOPDOWN were required to obtain an EQ-OBDD. In
the rest of this section we prove that the fixed point can be reached in a finite
number of steps, and that it is an ordered EQ-BDD.

Lemma 24. Let ¢ be a simplified EQ-BDD and g be a simplified guard. Then

(1) @ >=rpo P|gd (3) if g occurs in $, then & >po P|gd
(2) D >rpo P|-gd (4) if g occurs in &, then & »po P|-gd

Proof. We apply simultaneous induction on the structure of . We only present
two interesting fragments of the proof of case (1) and (3), where & = ITE(u =
v,T,U) and ¢ = z =y. Note that ¢ < y and v < v, because & and g are
simplified.

First consider case (1). By definition &|;0 = ITE((u = v)|gl,T|od, Ulgd)d
Observe that (u = v)|,] either equals 1,z = v (ifu = y),u =z (if v =y and
u<z),z=u(if v=yand z < u) or u =v. The case v = z does not occur, for
we would have v <z <y =u < v.

In the first case ¢|,4 = T'|,|. Using the induction hypothesis, T >po T'|gd-
By property (I) of recursive path orderings it follows that @ >,p, T and hence
b >rpo P|gd. In the next three cases, it is obvious that z = v < u = v and
u=gz<u=uvand z =u < u =v, respectively. Now using a similar argument
as above, we can show that ¢ >, T'|yl and & >, Ulyd. So, by property (II)
of RPO it follows that & >, $|,). In the last case, where (u = v)|, = u =1,
we find by the induction hypothesis T' >p, T'|g) and U >1p0 Ulgl. By property
(ITI) of RPO it follows that & >.p, Pyl

Now consider case (3). Note that in case (1) we proved that & >.p Y|, in
all but the case where (u = v)|;) = u = v. So, we only need to consider this

173

case. As g occurs in @, it must occur in T or in U. As the cases are symmetric,
we can without loss of generality assume that g occurs in 7. Via the induction
hypothesis it follows that T' >0 T|,44. Furthermore, by case (1) U »=rpo Ulgl.
So, by property (III) of RPO we can conclude that

@ =ITE(u = v,T,U) >rpo ITE(u = v, T4, Ull) = 8,1 O
Lemma 25. Let & be a simplified EQ-BDD.

1. & =1po TOPDOWN(D).
2. @ is ordered iff & = TOPDOWN(SP).

Proof. Part 1 is proved by induction on #(®). Note that if & does not con-
tain a guard then it is equal to 1 or 0, and this theorem is trivial. So, assume
& contains at least one guard and let g be the smallest guard occurring in
&. Recall from Lemma 19, 20 that #(&) > #(&|,)) and similar for —g. Then
ToPDOWN(®) = ITE(g, TOPDOWN(P|,]), TOPDOWN(P|-,])). By induction hy-
pothesis and Lemma 24, we have:

¥y P70 Plgd Zepo TOPDOWN(Z|)
& >'rp0 é'ﬂg*l' trpo TOPDOWN(¢|_\g‘L)

First, assume TOPDOWN(®|,|) = TOPDOWN(P|-41). Then TOPDOWN(P)
ToPDOWN(®|,]) and we are done by (*). Now assume TOPDOWN(P|,|)
ToPDOWN(®|-,!), and assume that & = ITE(h,T,U). Then TOPDOWN(P)
ITE(g, ToPDOWN(®|yl), TOPDOWN(P|-41)). As g is the smallest guard, one of
the following two cases must hold.

i il

— g = h. In this case ®|,) = T|y). Using Lemma 24 and the induction hy-
pothesis, we can conclude T' >ipo T|gl = Plgd >rpo TOPDOWN(P|).
Similarly, U >rpo TOPDOWN(®P|-4l). By case (III) of RPO it follows that
& >1po TOPDOWN(D).

~ h > g. Using (*) we can immediately apply case (II) of RPO and conclude
that & >rpo TOPDOWN(SP).

Part 2. Both directions are proved by structural induction on ¢. =: We must
show that if & is ordered, then & = ToPDOWN(P). The case where & equals 0
or 1 is trivial. So, consider the case where & = ITE(g,7,U). As & is ordered, g
must be the smallest guard of ¢ and cannot occur in T or U. Also, if g =z =y,
y does not occur in T'. Moreover, T and U are ordered, hence also simplified. So,
P|gl =T and |-yl =U. Note that T Z U.

ToPDOWN(P) =

ITE(g, ToPDOWN(®|,4), TOPDOWN(P|-4l)) =

ITE(g, TorpowN(T), TorDOWN(U)) = (Induction hypothesis)
ITE(g, T, U) =

)

<=: Assume ¢ = TOPDOWN(®). If ¢ is 1 or O then it is trivially ordered. So
assume ¢ = ITE(g,®;,P2). Then TorpowN(®) = ITE(h, ¥;,¥;), where h is

174

the smallest guard in &, ¥; = ToPDOWN(®|xl) and ¥y = TOPDOWN(P|-nd).
If ¥; = ¥y, then ¢ = ¥ and using Lemma 24.3 and 25.1 we get the following
contradiction: @ >;po H|nd =rpo V1 = D.

Hence ¥, # ¥,. Then it must be the case that g = h, $; = ¥; and P2 =
!pg. Note that then thl = éllhi. NOW, as @1 trpo ¢1|h¢ = @Ihl trpo !pl
it must be the case that &; = &;|p{, hence $; = Torpown(P;). Similarly,
@y = TOPDOWN(Ps).

We must show that @ is ordered. By induction hypothesis, $; and &, are
ordered, so no rule of the TRS ORDER is applicable to a strict subterm of $. We
now show that no rule (1-8) is applicable to the root of &:

If rule 1 is applicable, then ¥; = ¥,, which we excluded already. In case of
rule 2, $; = ITE(g,T,U), and we obtain the following contradiction: $; >rpo
T =rpo T|gd = D1yl = ¥1. Rule 3 is excluded similarly. Rule 4 and 5 are not
applicable because g = h, which is the smallest guard in ®. Rule 6 and 7 are not
applicable because & is simplified. Finally, if rule 8 were applicable, g =z =1y
and y occurs in ;. Then, using monotonicity of »;p,, we have the following
contradiction: @1 >rpe P1[y = 2] = $1|y =rpo P1]gd = P1. The last inequality
uses the fact that the applicable rules of SIMPLIFY are contained in >rpo. O

Theorem 26. Let ¢ be o simplified formula. Iterated application of TOPDOWN
to @ leads in a finite number of steps to an EQ-OBDD equivalent to ®.

Proof. After one application of TOPDOWN, & is transformed into a simplified
EQ-BDD. So, iterated application of TOPDOWN leads to a sequence ¢, $;,Ps, . . .
of which each &; (i > 1) is a simplified EQ-BDD. By Lemma, 25.1 the sequence
&1, Ps, ... is decreasing in a well-founded way. Hence, at a certain point in the
sequence we find that &; = &;,,. By Lemma 25.2 &; is the required EQ-OBDD.
Note that by Lemma 25.2 &; is the first ordered EQ-BDD in the sequence. O

We conclude with the complete algorithm to transform an arbitrary formula @

to EQ-OBDD, which is just a repeated application of TOPDOWN until a fixed
point is reached:

EQ-0BDD($) = fixedpoint(TOPDOWN)(P))

We stress that in the benchmarks we never needed more than 2 iterations.
This is not generally the case:

Ezample 27. Given a < b < ¢ < d < e < f, the following EQ-BDD needs
4 iterations: ITE(a = f,ITE(a = e,d = ¢,c = d),b = ¢). The intermediate EQ-
BDDs have size 9, 13, 23 and 21, respectively. This can be checked with our
implementation. O

3.3 Implementation and Benchmarks

In order to study the performance of TOPDOWN, we made an implementation
and used it to try the benchmarks reported in [16,19]. The authors report to
have comparable performance as in [10]. Unfortunately, we could not obtain the
benchmarks used in {7]. We first describe the implementation, including some
variable orderings we used and then present the results.

175

Prototype implementation. We have made a prototype implementation of the
ToPDOWN algorithm. As programming language we used C, including the ATerm-
library [4]. The basic data types in this library are ATerms and ATermTables.
ATerms are terms, which are internally represented as maximally shared DAGs.
As a consequence, syntactical equality of terms can be tested in constant time.
The basic operations are term formation and decomposition, which are also per-
formed in constant time. ATermTables implement hash tables of dynamic size,
with the usual operations. The ATerm-library also provides memory manage-
ment functionality, by automatically garbage collecting unreferenced terms. By
representing formulae and BDDs as ATerms, we are sure that they are always a
maximally shared DAG.

Care has to be taken in order to avoid that during some computation, shared
subterms are processed more than once. Therefore all recursive procedures, like
“find the smallest variable”, “simplify” and &|, are implemented using a hash
table to implement memoization. In this way, syntactically equal terms are pro-
cessed only once, and the time complexity for computing these functions is
linear in the number of nodes in the DAG, which is the number of different
subterms in the formulae. Also the TOPDOWN-function itself uses a hash ta-
ble for memoization. This contributes to its efficiency: Consider a formula ¥
which is symmetric in p and ¢ (for instance: (p Aq) VP, or (p AP)V (¢ A P)).
Then (¥|pd)|-gd = (¥]-pd)|¢d. Thanks to memoization, only one of them will
actually be computed. Still, the ToPDOWN function has worst case exponential
behavior, which is unavoidable, because in the propositional case (i.e. excluding
equations) it builds an OBDD from a propositional formula in one iteration.
Due to memoization of TOPDOWN’s arguments, the memory demands are rather
high.

Results. Benchmark formulae can be obtained from [19] and most of them could
be solved with the methods described in [16]. Each formula is known to be a
tautology. They originate from compiler optimization; each formula expresses
that the source and target code of a compilation step are equivalent. We used
the versions where Ackermann’s function elimination has been applied [1], but
domain minimization [16] has not yet been applied. In fact, our method does
not rely on the finiteness of domains at all. The benchmark formulae extend the
formulae of Definition 1 in various ways, but these extensions could be dealt
with easily.

It is well known that the variable ordering has an important effect on the
performance. We therefore tried a number of orderings: With ‘t’ we denote the
textual order of the variables as given in [19]. With ‘r’ we denote the reverse of
this textual order. Finally, ‘bt’ (‘br’) denotes the textual (reverse) order, except
that boolean variables always precede domain variables.

We can now present the results. They can be found in Figure 3. The first
column contains the number of the files, as given in [19]. The next three columns
give an indication of the size of the formula: #b is the number of boolean vari-
ables, #d the number of domain variables, and #n is the number of nodes in a
maximally shared representation of the formula. The fifth column contains the

176

[Nr. file[[#d[#b] #n [[[16,19]] ¢t [bt | r [br]
022 || 59149993 :0.16{| :13] :16{17:01|7:50
025 || 45 (55285 :0.2{ :0.3] :0.3] :0.1}:0.1
027 | 2160|569 :1.7]|112:37{10:55] —| —
032 | 16|48 |525 0.1 :3.2] :3.2| 5:02(4:12
037 || 1226|942 :0.15]| 2:17] :2.3] 7:28] :12
038 6 14844 :0.18)| :17| :0.4{ :6.8/:0.3
043 ||158| 72 |1717 — = - - —
044 | 39141383 :0.1f :3.7] :2.0| 0:28{:1.6
046 || 6835|667 | :0.13 — - - —
049 ||163|75 (1717 — —! — :0.3/:0.1

Fig. 3. Timing results for the benchmarks

times reported in [19], obtained by the method of [16]. The other columns show
our results, using various variable orderings. Each entry is in minutes, i.e. a : b.c
means a minutes, and b.c seconds. With — we denote that a particular instance
could not be solved, due to lack of memory. The times are including the time to
start the executable, I/O and transforming the benchmarks to the ATerm format.
We used an IRIX machine with 300 MHz and where the processes could use up
to 1.5 GB internal memory.

The table shows that we can solve 8 out of 10 formulae. In this respect our
method is comparable to [16]. The exact times are not relevant, because we
have made a prototype implementation, without incorporating all well-known
optimizations applied in BDD-packages, whereas [19] used an existing BDD-
package.

It is also clear that the variable ordering is rather important. In most cases, it
is a good idea to split on boolean variables first, before splitting on equalities. The
reason probably is that splitting on an equality introduces new guards, which
can be rather costly. We also counted the number of iterations of TOPDOWN
that were needed in order to reach an EQ-OBDD. Remarkably, the maximum
number of iterations was 2 and nearly all time was spent in the first iteration.
Most benchmarks even reached a fixed point in the first iteration.

We conclude that the algorithm TOPDOWN is feasible. This is quite remark-
able, as the top-down method is usually regarded as inefficient. We attribute this
to the use of maximal sharing and memoization. In the next standard example,
it is even more effective than using APPLY.

Ezample 28. Consider the formula X = p A (¢ A —p). In case p is the smallest
variable, TOPDOWN terminates in one call, because X|,/ = 0 and X|-,4 =0
and a contradiction is detected. 0

The usual APPLY algorithm will completely build the tree for @, potentially
resulting in an exponential blow-up. Many heuristics for providing a variable
ordering will make p minimal, so this is a realistic scenario. In (2] an adaptation

177

to the original APPLY algorithm is described, which also solves this formula in
constant time.

4 Future Work

Our motivation originates from investigations in the computer-aided analysis of
distributed systems and protocols, where data is usually specified by algebraic
data types, and automated reasoning is generally based on term rewriting. For
this reason, function symbols cannot be eliminated, and the domains are gen-
erally structured and often infinite. For instance, as soon as we introduce the
successor function on natural numbers, all interesting models are infinite.

QOur approach forms an extendible basis. We may allow function symbols
in EQ-BDDs. In the algorithm, the rewrite rules of the data domain can be
added to the TRS SiMPLIFY. In this way, one is able to prove for instance that
r <yVz # y is a tautology. Obviously this is not true when the interpretation of
functions is free (e.g. interpret < as <). However, consider the following definition
of < in terms of rewrite rules, where S denotes the successor function:

<00 z<S(y)=>z<y z<y—>z<yVvVz=y

An EQ-OBDD proof with auxiliary rewrite rules of £ < y V z # y looks as
follows:

rewritin
Y=z €

Also, z <0Ay =0 — z =y can be proved in this way. Note that this doesn’t
hold on the integers or reals, so the logic of difference constraints [13] cannot be
used here.

As future work we plan to investigate under which conditions such extensions
are complete. For instance, in the example above we at least additionally need
the following rules:

0=S(z) »0 S(z)=Sky)2>z=y z=S"(z) =» 0.

We also plan to improve and extend our algorithm in the presence of function
symbols. One of the main issues here is how to extend the ordering on the new
nodes.

Acknowledgments. We like to thank Ofer Shtrichman for making his benchmarks
publicly available and discussing them. We are also indebted to the anonymous
referees for improving some of the proofs.

178

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

W. Ackermann. Solvable Cases of the Decision Problem. Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam, 1954.

H. R. Andersen and H. Hulgaard. Boolean expression diagrams. In Twelfth Annual
IEEE Symposium on Logic in Computer Science, pages 88-98, Warsaw, Poland,
1997. IEEE Computer Society.

. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.

. M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient An-

notated Terms. Software - Practice & Experience, 30:259-291, 2000. See also
http://www.cwi.nl/projects/MetaEnv/aterm/.

. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677-691, 1986.

R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293-318, 1992.

R.E. Bryant, S. German, and M.N. Velev. Exploiting positive equality in a logic of
equality with uninterpreted functions. In N. Halbwachs and D Peled, editors, Proc.
of Computer Aided Verification, CAV’99, LNCS 1633. Springer-Verlag, 1999.
Burch, J.R. and D.L. Dill. Automatic verification of pipelined microprocessors
control. In D. L. Dill, editor, Proceedings of Computer Aided Verification, CAV’94,
LNCS 818, pages 68-80. Springer-Verlag, June 1994.

N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1-
2):69-115, 1987.

A. Goel, K. Sajid, H. Zhou, and A. Aziz. BDD based procedures for a theory of
equality with uninterpreted functions. In Proceedings of Computer Aided Verifica-
tion, CAV’98, LNCS 1427, pages 244-255. Springer-Verlag, 1998.

J.W. Klop. Term rewriting systems. In D. Gabbay S. Abramski and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume 1. Oxford University
Press, 1991.

C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design:
OBDD-Foundations and Applications. Springer-Verlag, 1998.

J. Mgller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference decision
diagrams. In J. Flum and M. Rodriguez-Artalejo, editors, Computer Science Logic
(CSL’99), LNCS 1683. Springer-Verlag, 1999.

G. Nelson and D.C. Oppen. Fast decision procedures based on congruence closure.
Journal of the Association for Computing Machinery, 27(2):356-364, 1980.

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T.A. Henzinger,
editors, Proceedings of Computer Aided Verification CAV’96, LNCS 1102, pages
411-414. Springer-Verlag, 1996.

A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by
small domains instantiations. In N. Halbwachs and D Peled, editors, Proceedings
of Computer Aided Verification, CAV’99, LNCS 1633. Springer-Verlag, 1999.

J.C. van de Pol and H. Zantema. Binary decision diagrams by shared rewriting.
In M. Nielsen and B. Rovan, editors, Proceedings of Mathematical Foundations of
Computer Science, MFCS’00, LNCS 1893. Springer-Verlag, 2000.

R.E. Shostak. An algorithm for reasoning about, equality. Communications of the
ACM, 21(7):583-585, 1978.

O. Shtrichman. Benchmarks for satisfiability checking of equality formulas. See
http://vww.visdom.weizmann.ac. il/~ofers/sat/bench.htm, 1999.

